If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+18x=960
We move all terms to the left:
2x^2+18x-(960)=0
a = 2; b = 18; c = -960;
Δ = b2-4ac
Δ = 182-4·2·(-960)
Δ = 8004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8004}=\sqrt{4*2001}=\sqrt{4}*\sqrt{2001}=2\sqrt{2001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{2001}}{2*2}=\frac{-18-2\sqrt{2001}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{2001}}{2*2}=\frac{-18+2\sqrt{2001}}{4} $
| 9+7g=65 | | (D-2)^3*y=0 | | 4n-13=n+11 | | 5(2y+3)=20 | | n×7=63 | | 3+4g=27 | | 8m-11=-75 | | 125=0,2.5^{x+2} | | 6+y=140y-1 | | 9=7+aa | | 12x-4=10x+15 | | 2x((3)/(x)-(3)/(2))-7=0 | | 0=2x((3)/(x)-(3)/(2))-7 | | F(10)=3x^2-5x+3 | | 5x7=9+2x | | 2(p+5)=37-p | | 6=x-(140/x) | | 4(x+3)=20 | | 7x+3=2x+33 | | 5×+3=x+27 | | -8(2t+2=-64 | | 4(x-1)=6x-9 | | x1.06=100 | | X^4=-(1+i) | | .06x+x=100 | | 7e+3=80 | | 140=y(6+Y) | | 4(4s+5)=148 | | 6x-7x=+11-1 | | X^4=-1-i | | 7-6c=47 | | 2a/7=42 |